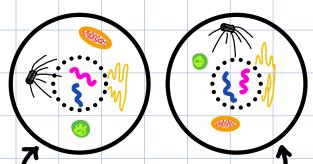

		D:		0.	••-	001	0.00	10			0			Can			
			olog	y au	IIZ -	Cel	cyc	16,	MITO	513,	Cycli	ns I	una	can	CET		
Mit	osis	•															
4 is	s the	diy	isior	of	the	nu	cieus	int	o fu	0 9	eneti	cally	ide	ntic	u d	augh	ter
	lei.											•					
										Pio							"J
T4 (does	70 (jtow	an	u ic	pair	Old	CEII	5 .								
<u>In</u>	erpl	nase	•														
•	Mos	t ac	Hve	and	Ion	gest	: ph	ase									
	re a									he i	nucio	eus (and	cuto	DIQS	m s	uch
	: me																
			Ullot	رار دار	Juoc	9100	10,	CAU	Lyto	910,	uəli	y ·		JDIY	,,,,,,	7	
	trier																
3 \$	itage	es:	GI,	S,	and	Ga											
Cu	clins	S :															
			mile		Brol	aine	وطلا	1 00	Alvel	001		11-	ina				
											cycle		•				
	Cells	ca	nnol	Pro	gre	SS (unie	ss a	Spe	Cific	Cy	nik	reac	hes	a c	ertai	n
con	cent	ratio	n														
•	Cycli	ins l	bind	to	enzy	me	s an	d a	tiva	te ·	then	n Cl	DKS	(cyc	lin		
	epen																
3	- F - O1 (
Chi	rom	oson	nes	in f	titos	is:											
•	Chro	mos	ome	S C	onde	ense	by	sup	erco	iling	y du	rin	g m	itosi	S		



- Nuclear membrane and nucleolus reform
- Spindle fibres disintegrate

3) Cytokinesis

Division of the cytoplasm into a daughter

Miotic index:

H.I. = # of cells in mitosis

Animal cells: microfilaments at equator pulls membrane in.

Cleavage furrow forms (pinching cells apart)

Plant Cells: Golgi apparatus forms vesicles merge to form a cell plate.

Cell plate forms a new cell wall.

Tumors and cancer:

Mutagens: are agents that

cause mutations, and therefore may cause cancer. (ex. x-rays, UV

radiation and abestos)

Oncogenes: a mutated gene

another part of the body.

Metastasis: movement of cells from a primary tumour to set up a secondary tumour in other parts of the body (spreading tumour) Difference between primary and secondary tumour: primary is where it starts. Secondary is when the tumour branches off to

	'n	مام	atio	n he	Ale 114	AAn	C MA	vin	0 0	a i	nei d	antc	Λſ	CO	nc A l	c		
								,	_									
		Cigo	irret	te s	mol	ce c	onła	ins	ma	ny i	diff	eren	t ch	emi	cal :	sub	Stan	ces
1	lar	ny O	ft	ese	ha	ve l	beel	n St	างพ	n t	ca	use	tun	nour	s in	exp	erin	nent
			s a															
		_								Mac	ut).	INK	5 IC	UAC?	NO	ao	ubt	'
+	ha	ł sr	nok	ing	ca	uses	ca	nce	۲.									